Skip to main content

AntTune: An Efficient Distributed Hyperparameter Optimization System for Large-Scale Data

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13946))

Included in the following conference series:

Abstract

Selecting the best hyperparameter configuration is crucial for the performance of machine learning models over large-scale data. To this end, the automation of hyperparameter optimization (HPO) has been widely applied in many automated machine learning (AutoML) frameworks. However, without the effective mechanisms of early stopping and prior knowledge leveraging, such automation is often time-consuming and even inefficient. To improve efficiency, we introduce AntTune, a distributed HPO system that includes parallel optimization, distributed evaluation, tensor cache, etc. Specifically, in AntTune, a time-saving and lightweight mechanism of early stopping is designed to process multiple trials simultaneously. Also, a tree-based meta-learning approach is developed to leverage knowledge from prior tasks and thus it can speed up current HPO tasks. The extensive experiments on both public and industrial datasets demonstrate that our AntTune can improve the state-of-the-art HPO platforms by an average of 3.26% in terms of the effectiveness metrics and 26.25% in terms of tuning time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    UCI URL: https://archive.ics.uci.edu/ml/index.php.

References

  1. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: ICML, pp. 115–123. PMLR (2013)

    Google Scholar 

  2. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: SIGKDD, pp. 785–794 (2016)

    Google Scholar 

  3. Cheng, H.T., Koc, L., Harmsen, J., et al.: Wide & deep learning for recommender systems. In: DLRS, pp. 7–10 (2016)

    Google Scholar 

  4. Erickson, N., Mueller, J., Shirkov, A., et al.: Autogluon-tabular: robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505 (2020)

  5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 113–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_6

    Chapter  Google Scholar 

  6. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  7. Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. In: SIGK, pp. 1946–1956 (2019)

    Google Scholar 

  8. Kandasamy, K., Vysyaraju, K.R., Neiswanger, W., et al.: Tuning hyperparameters without grad students: scalable and robust bayesian optimisation with dragonfly. arXiv preprint arXiv:1903.06694 (2019)

  9. Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36(1), 250–256 (2020)

    Article  Google Scholar 

  10. Li, L., Jamieson, K., Rostamizadeh, A., et al.: A system for massively parallel hyperparameter tuning. MLSys 2, 230–246 (2020)

    Google Scholar 

  11. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., et al.: Hyperband: a novel bandit-based approach to hyperparameter optimization. JMLR 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Microsoft: Neural Network Intelligence. https://github.com/microsoft/nni, Accessed 30 July 2022

  13. Salesforce: Transmogrifai’s documentation. https://transmogrif.ai/. Accessed 8 July 2022

  14. Thornton, C., Hutter, F., Hoos, H.H., et al.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: SIGKDD, pp. 847–855 (2013)

    Google Scholar 

  15. Yu, Y., Qian, H., Hu, Y.Q.: Derivative-free optimization via classification. In: AAAI (2016)

    Google Scholar 

  16. Zhou, J., Velichkevich, A., Prosvirov, K., Garg, A., Oshima, Y., Dutta, D.: Katib: a distributed general automl platform on kubernetes. In: OpML, pp. 55–57 (2019)

    Google Scholar 

  17. Zimmer, L., Lindauer, M., Hutter, F.: Auto-pytorch: multi-fidelity metalearning for efficient and robust autodl. IEEE TPAMI 43(9), 3079–3090 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, J., Shi, Q., Ding, Y., Wang, L., Li, L., Zhu, F. (2023). AntTune: An Efficient Distributed Hyperparameter Optimization System for Large-Scale Data. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13946. Springer, Cham. https://doi.org/10.1007/978-3-031-30678-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30678-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30677-8

  • Online ISBN: 978-3-031-30678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics